toprak ile ilgili görsel sonucu
Nitrogen can go through many transformations in the soil. These transformations are often grouped into a system called the nitrogen cycle, which can be presented in varying degrees of complexity. The nitrogen cycle is appropriate for understanding nutrient and fertilizer management. Because microorganisms are responsible for most of these processes, they occur very slowly, if at all, when soil temperatures are below 50° F, but their rates increase rapidly as soils become warmer.

The heart of the nitrogen cycle is the conversion of inorganic to organic nitrogen, and vice versa. As microorganisms grow, they remove H4+ and NO3- from the soil’s inorganic, available nitrogen pool, converting it to organic nitrogen in a process called immobilization. When these organisms die and are decomposed by others, excess NH4+ can be released back to the inorganic pool in a process called mineralization. Nitrogen can also be mineralized when microorganisms decompose a material containing more nitrogen than they can use at one time, materials such as legume residues or manures. Immobilization and mineralization are conducted by most microorganisms, and are most rapid when soils are warm and moist, but not saturated with water. The quantity of inorganic nitrogen available for crop useoften depends on the amount of mineralization occurring and the balance between mineralization and immobilization.

toprak ile ilgili görsel sonucu

Ammonium ions (NH4+) not immobilized or taken up quickly by higher plants are usually converted rapidly to NO3- ions by a process called nitrification. This is a two-step process,during which bacteria called Nitrosomonas convert NH4+ to nitrite (NO2-), and then other bacteria, Nitrobacter, convert the NO2- to NO3-. This process requires a well-aerated soil and occurs rapidly enough that one usually finds mostly NO3- rather than NH4+ in soils during the growing season.
 

The nitrogen cycle contains several routes by which plant-available nitrogen can be lost from the soil. Nitrate-nitrogen is usually more subject to loss than is ammonium-nitrogen. Significant loss mechanisms include leaching, denitrification, volatilization and crop removal.

The nitrate form of nitrogen is so soluble that it leaches easily when excess water percolates through the soil. This can be a major loss mechanism in coarse-textured soils where water percolates freely, but is less of a problem in finer-textured, more impermeable soils, where percolation is very slow.


toprak ile ilgili görsel sonucu

 

These latter soils tend to become saturated easily, and when microorganisms exhaust the free oxygen supply in the wet soil, some obtain it by decomposing NO3-. In this process, called denitrification, NO3- is converted to gaseous oxides of nitrogen or to N2 gas, both unavailable to plants. Denitrification can cause major losses of nitrogen when soils are warm and remain saturated for more than a few days.

Losses of NH4+ nitrogen are less common and occur mainly by volatilization. Ammonium ions are basically anhydrous ammonia (NH3) molecules with an extra hydrogen ion (H+) attached. When this extra H+ is removed from the NH4 ion by another ion such as hydroxyl (OH-), the resulting NH3 molecule can evaporate, or volatilize from the soil. This mechanism is most important in high-pH soils that contain large quantities of OH- ions.


toprak ile ilgili görsel sonucu

Crop removal represents a loss because nitrogen in the harvested portions of the crop plant is removed from the field completely. The nitrogen in crop residues is recycled back into the system, and is better thought of as immobilized rather than removed. Much is eventually mineralized and may be reutilized by a crop.

 

RELATED TAGS: The amount of nitrogen in the soil, nitrogen flows, soil organic nitrogen in the soil inorganic nitrogen, nitrogen fertilizer, nitrogenous fertilizer, the importance of nitrogen, nitrogen how it works, plants nitrogen, nitrogen requirements, nitrogen deficiency in plants, nitrogen surplus in the plant, nitrogen liquid fertilizer, nitrate nitrogen fertilizer production, nitrate What nitrogenous fertilizer, characteristics of nitrate nitrogen fertilizer, what does the nitrate-nitrogen fertilizer, nitrate nitrogen fertilizer production, nitrate nitrogen fertilizer how it works, nitrate nitrogen fertilizer composition of nitrate nitrogen fertilizer compounds, what is the urea nitrogen, urea nitrogen manufacturing formula , urea nitrogen fertilizer production formula, urea nitrogen liquid fertilizer production, why use nitrogen fertilizer urea, urea nitrogen fertilizer used when urea nitrogen fertilizer characteristics, solid nitrogenous fertilizer urea properties.


AGRICULTURE ENCYCLOPEDIAS AND CONTENTS


CHEMICAL FERTILIZERS FORMULATIONS ENCYCLOPEDIAORGANIC FERTILIZERS FORMULATIONS ENCYCLOPEDIA



OPPORTUNITIES



       1  ENCYCLOPEDIA    165 $

2  ENCYCLOPEDIAS               300 $



ORDER NOW





AGRICULTURE ENCYCLOPEDIAS AND VIDEOS
 







SOLVER CHEM




SPECIAL FERTILIZERS FORMULATIONS ENCYCLOPEDIA
SPECIAL FERTILIZERS FORMULATIONS ENCYCLOPEDIA
SOLVERCHEM
PDF | ENGLISH | 270 USD
Buy NOW!


ORGANIC FERTILIZERS FORMULATIONS ENCYCLOPEDIA
ORGANIC FERTILIZERS FORMULATIONS ENCYCLOPEDIA
SOLVERCHEM
PDF | ENGLISH | 275 USD
Buy NOW!


AGRICULTURAL CHEMICALS ENCYCLOPEDIA
AGRICULTURAL CHEMICALS ENCYCLOPEDIA
SOLVERCHEM
PDF | ENGLISH | 270 USD
Buy NOW!